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Abstract 

Spectral extinction was measured in situ for aerosolized Bacillus 
subtilis var. niger (BG) endospores with the use of Fourier-transform 
infrared (FTIR) spectroscopy from 3.0 to 13.0 urn. Corresponding 
aerosol-size distributions were measured with the use of a 
commercially available elastic light-scattering probe and verified by 
direct particle capture and subsequent counting via video 
microscopy. Aerosol mass density was monitored simultaneously 
with conventional dosimetry and used to mass-normalize the 
measured spectral extinction. Mie theory calculations based on 
measured distributions and available complex indices of refraction 
agreed well. Also present are resultant Mie calculations for the 
absorption, total scattering, and backscattering. Included are the 
real and imaginary components of the complex index of refraction for 
BG as measured by Milham and Quarry. Both calculated and 
measured cross sections suggest that for wavelengths longer than 
6.0 urn, the total extinction is primarily due to absorption. Finally, to 
offer a comparison, we present measured spectral extinction for three 
additional aerosols often found in the lower atmosphere, i.e., water 
fog, diesel soot, and Arizona road dust. 
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1.   Introduction 

Infrared (IR) spectral extinction for common inorganic aerosols found in 
the lower atmosphere has been studied and reported on extensively [1-5]. 
However, research involving the optical properties for intact viruses, fungi, 
and bacterial aerosols is still extremely rare and woefully lacking [6-8]. 
Though much of the aggregate bioaerosol material in the lower atmosphere 
is mundane in nature, reported diseases in humans, animals, and plants 
have been linked to certain airborne bacteria [9-13]. Tong and Lighthart 
have reported ambient total atmospheric bacterial (TAB) concentrations for 
a rural environment that range from 0.1 to 0.001 airborne bacteria per cm3 

(cells/cm3) [14,15]. 

The ability of one to detect the presence of a harmful bioaerosol from a safe 
distance is an ever-increasing topic of interest. Proposed optical methods 
that involve IR light are usually restricted to one or both of the atmospheric 
transmission window regions, i.e., 3 to 5 (im and/or 8 to 12 \xm. These meth- 
ods usually involve either passive or active illumination schemes, e.g., 
hyper spectral IR imaging or a C02 lidar-type arrangement [16-20]. Whether 
these (or other) optical techniques are appropriate for the remote detection 
and identification of harmful bioaerosols remains a topic of discussion. 
Nevertheless, for the utility of any particular approach to be properly evalu- 
ated, certain optical parameters at IR wavelengths for well-characterized 
bioaerosols are badly needed. 

Methods for determining the electromagnetic interaction with bioaerosols 
usually involve either direct in situ light measurements or particles that 
exhibit some spherical symmetry (or that are Rayleigh); Mie or a compa- 
rable theory may be used to calculate the scattered and absorbed fields. For 
the latter approach in which the optical interaction is computed, the com- 
plex refractive indices for the biomaterials are assumed to be well known. 
Even when these refractive indices exist (which is rarely), accurate predic- 
tive calculations are usually extremely difficult to compute, since these types 
of particles are typically inhomogeneous and often nonspherical. 

We directly measured the IR spectral extinction for aerosolized Bacillus 
subtilis var. niger (BG) endospores from 3 to 13 |xm using conventional 
Fourier-transform infrared (FTIR) spectroscopy. Size distributions, aerosol 
densities, and particle morphology were measured simultaneously. We then 
compared these results with Mie theory calculations using complex indices 
of refraction provided by Milham and Quarry [20]. For regions in which 
there is good agreement between the measured and calculated extinction, 
we also present the total scatter, absorption, and backscatter components 
predicted by the Mie theory. Spectral extinction for both bulk powder and 
thin-film forms of BG is also presented. Finally, we contrast the extinction 
spectra for BG with three atmospheric aerosols commonly found in the en- 
vironment, i.e., water fog, diesel soot, and Arizona road dust. 



2.   Experiment 

The BG endospores used in this study were provided by the Edgewood 
Research Development and Engineering Center (ERDEC), Aberdeen Prov- 
ing Ground, MD, and were produced in large quantities for use as a bio- 
logical warfare (BW) simulant. This material, often referred to as "military- 
grade" BG, was assayed and known to contain 12.7 x 1010 colony-forming 
units per gram (cfu/g). Ion chromatography was performed on both washed 
and unwashed suspensions. Results showed small quantities of sulfate ions 
with lesser amounts of P04~3, F~, and Cl~ ions, which have been attributed 
to small quantities of residual growth media. Prior ultraviolet fluorescent 
studies have associated certain anomalous results to these sulfate ions [22]. 
IR extinction measured here for both washed and unwashed BG samples 
showed no appreciable differences between the spectra. 

The primary transmission measurement was conducted in a 0.5-m3 aerosol 
chamber, which provided an optical path length of 0.61 m. Dry and hy- 
drated BG endospores in aerosol form were dispersed separately with a 
variety of techniques that have proven effective in prior studies. We gener- 
ated hydrated endospore droplets using two pharmaceutical nebulizers that 
atomized various concentrations of a BG/water solution. To simulate con- 
ditions similar to the open atmosphere, we evaporated the encapsulating 
water droplets by directing the BG /water spray into a plenum of heated 
dry air. The resultant spore aerosol was gently drawn into the chamber with 
a small-area recirculating fan. We continuously monitored relative humid- 
ity using a filtered dew-point hygrometer that was inserted through the 
walls of the chamber. 

Dry powdered BG was effectively aerosolized and sprayed into the cham- 
ber. Pressurized air was used to inject the endospore powder through a 
cylindrical nozzle that contained a spiraling array of fine stainless-steel wires. 
A vortex created within the nozzle effectively separated and dispersed the 
bacterial spores with minimal agglomeration. Care was taken to properly 
adjust the air pressure so that spore coatings remained reasonably intact. 

We obtained IR transmission spectra using a high-resolution (0.02 
wavenumber) Bomem DA2.02 FTIR spectrometer. For this study, the spec- 
trometer was operated in a transmission mode, i.e., spectral attenuation was 
measured by placing the aerosol chamber between the source and the inter- 
ferometer. A broadband IR Nernst glower was collimated with a ZnSe con- 
densing lens assembly and projected through the aerosol chamber with two 
BaF2 transmission windows that were fitted with dry-air flushes. Transmit- 
ted light was coupled to the interferometer with a gold-surfaced f/4 off- 
axis parabola. 

Particle-size distributions were measured with a commercial particle-size 
spectrometer. We used Particle Measuring Systems, Inc. (PMS), particle spec- 
trometer (model CSASP-100) to monitor in real time the aerosol size distri- 
bution. We determined particle-shaped characteristics by analyzing 



photographs of captured particles that were collected on shielded glass 
slides. Using these photographs, we directly counted representative samples 
and generated a size distribution that agreed well with the distributions 
measured using the PMS. The resultant size distribution with a correspond- 
ing log-normal fit (r modal = 0.89 um; standard deviation, cr= 0.15). A typi- 
cal BG run is shown in figure 1. Photographs also showed that the endospore 
aerosol consisted of mostly single or minimally agglomerated particles that 
appeared reasonably spherical (see fig. 2). Aerosol mass densities (g/m3) 
were periodically measured by collecting the aerosol on polycarbonate fil- 
ters while sampling known volumes of air for predetermined periods of 
time. Results from the dosimetric sampling were then used to mass- 
normalize the measured extinction (m2/g). 

To offer a comparison, we measured the spectral extinction for three addi- 
tional "background" aerosols commonly found in the environment, i.e., die- 
sel soot, water fog, and Arizona road dust (Si02). Environmental aerosols 
were generated by either burning diesel fuel (soot), nebulizing distilled water 
(fog), or dispersing dry dust in a similar manner as just described (Arizona 
road dust). Spectra were measured and mass-normalized in the same fash- 
ion as the BG aerosol. 
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Figure 2. Single BG 
endospores shown 
here to be reasonably 
spherical. 



3.   Results 

Iriterferograms were recorded before, during, and after each aerosol disper- 
sion. We applied a Bartlet apodization to each interferogram before per- 
forming background rationing. Forward-scattering corrections were applied 
to the raw transmission and were found to be insignificant at the wave- 
lengths above 6 |im. As the wavelength becomes comparable (or smaller) to 
the endospore diameter, the forward-scattering correction increases mono- 
tonically and was found to be as much as 9 percent at 3 urn [23]. Figure 3 
shows a typical graph of the recorded transmittance from 3 to 13 (im for a 
series of concentrations of BG aerosol. Transmission was converted to ex- 
tinction with a Beer's law relation. Results were mass-normalized by divid- 
ing the raw extinction (1/m) by the corresponding aerosol mass density 
(g/m3) measured during the dosimetric portion of the experiment (see fig. 4). 

Figure 3. FTIR 
transmittance for 
various aerosol 
concentrations of BG. 

Figure 4. Measured 
and calculated mass- 
normalized (m2/g) 
extinction, absorption, 
total scatter, and 
backscatter cross 
sections for 
aerosolized BG 
endospores. 
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Figure 4 shows both measured and calculated cross sections. Mie theory 
cross sections were calculated by convolving the measured size distribu- 
tion with the complex indices of refraction (provided by Milham and Quarry) 
shown in figure 5 [20]. As one can see, the measured extinction shows simi- 
lar form to the calculated spectra, albeit at slightly reduced levels. What is 
interesting and worth noting is that beyond 6 |im, the Mie calculations show 
that almost all the extinction for the BG aerosol is due to absorption. 

Particle number densities were calculated by integrating the measured size 
distribution with the estimated mass per particle (bulk density for BG taken 
to be 1.45 g/cm3) and equating it to the measured aerosol mass density [25]. 
Particle number densities for a typical run ranged from a low of 2 x 103 

endospores/cm3 for periods in which a significant amount of settling had 
occurred to peak values on the order of 1 x 106 endospores/cm3 for periods 
shortly after the initial dispersion. Note that certain spectral features be- 
came difficult to resolve when particle number densities fell much below 
103 endospores/cm3 (based on our relatively small 0.61-m path length). 

It is sometimes convenient to represent the coefficients shown in figure 4 on 
a "per-spore" basis. Using the measured size distribution and assuming the 
endospores and their agglomerates are reasonably spherical, we calculate a 
value of approximately 5 x 10-12 g/spore, which can then be used to con- 
vert the mass-normalized quantities shown in figure 4 (m2/g) to cross sec- 
tions per spore (m2/spore). As an example, we find from figure 4 the mass- 
normalized extinction at 9.32 |j,m to be 1.16 x 10"1 m2/g. Multiplying this 
value by the conversion factor, 5 x 10"12 g/spore, we calculate the extinction 
cross section per spore to be 0.583 x 10"12 m2/spore. This compares well 
with the Mie theory calculated value of 0.525 x 10"12 m2/spore. 

To contrast these results, we measured the extinction spectra for three at- 
mospheric aerosols, i.e., water fog, diesel soot, and Arizona road dust. A 
similar set of measurements was repeated for the three environmental aero- 
sols. Care was taken to ensure that generated size distributions (especially 
for the water fog) were similar to those measured in the field [26]. Mass- 
normalized extinction spectra for the three aerosols are compared with BG 
and are shown in figure 6. Absorption caused by residual water vapor pro- 
duced the fine structure seen between 5 and 8 fim in both the fog and soot 
spectra, and the apparent spike seen near 4.25 \im in all spectra (especially 
for soot) was identified as residual COz. 



Figure 5. (a) Real and     (a)  1.60 
(b) imaginary indices 
of refraction for BG. 
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4.   Discussion 

As seen in figure 6, BG shows relatively moderate extinction at the IR wave- 
lengths considered (on a mass-normalized basis) when compared to the 
various background aerosols. As expected, the spectra for aerosolized BG 
are relatively smooth and devoid of any sharp identifiable "line" structure. 
While many of the IR bands of intact microorganisms still have to be as- 
signed unambiguously preliminary species identification conducted on bio- 
logical thin-films has been reported [27]. 

The most characteristic features associated with the presence of certain spore 
proteins occur in the range between 5.6 and 6.6 [im and are attributed to the 
so-called "amide I and II" absorption bands. Unfortunately, this highly char- 
acteristic region lies in the middle of the most opaque portion of the atmo- 
sphere and is probably of little value when possible remote detection tech- 
niques are considered (i.e., because of strong water vapor absorption, trans- 
mission from 5 to 8 |im is nearly impossible) [28]. Naumann and Helm have 
tentatively identified the smooth broadly peaked region between 8 and 
11 |j,m as a superposition of many fine absorption bands caused by C-O-C 
and C-O-P stretching of predominantly polysaccharide or phophodiester 
[29]. Naumann and Helm assert that the peak around 9.3 mm is due prima- 
rily to symmetric molecular vibrations of phosphate diesters. Beyond 11 
[im, the region exhibits a variety of weak but extremely characteristic fea- 
tures attributed to aromatic ring vibrations of phenylalanine, tyrosine, tryp- 
tophan, and various nucleotides. With the exception of a few weak peaks 
around 13 |im (resulting from >CH2 rocking modes of fatty acid chains), 
specific assignment is impossible. Although this region appears relatively 
featureless, Naumann and Helm have successfully used this 8- to 13-p.m 
region for taxonomical identification of bacterial thin-films. Because of this, 
the region is often referred to as the "bacterial fingerprint region." 

Because much of the existing information (albeit limited) involving IR spectra 
for biological materials is derived from thin-film samples, we thought it 
interesting to compare differences among extinction spectra for various 
forms of BG. Figure 7 shows a comparison of the spectral extinction for 
aerosolized BG, bulk powdered BG (measured with attenuated total reflec- 
tion (ATR)), and thin-film spectra taken from Yabushita and Wada [27]. As 
expected, much of the spectral information is similar from one form to an- 
other for regions where absorption is predicted to dominate. Also seen in 
figure 7 are the effects caused by scattering. As the ratio of the spore diam- 
eter to wavelength becomes larger, scattering begins to dominate in the aero- 
sol extinction. Certain absorption features seen near 3 p,m for the bulk and 
thin-film spectra are completely obscured by particulate scattering and are 
not seen in the aerosol spectra. 

As one can see in figures 4, 6, and 7, most aerosol spectra tend to be devoid 
of any easily identifiable characteristic features. This makes reliable identi- 
fication difficult with the use of conventional spectra correlation techniques. 
Naumann and Helm have demonstrated the ability to rapidly classify and 



Figure 7. Comparison 
of FTIR measurements 
conducted on various 
forms of BG, i.e., 
aerosolized BG (top), 
thin-film slurry 
(middle), and bulk 
powdered BG 
(bottom). 
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group intact bacterial specimens using a technique called "cluster analysis" 
[6]. Their approach is based on treating spectra as images or patterns and 
applying classic pattern recognition algorithms to discriminate subtle dif- 
ferences among similar spectra. A variety of simple mathematical opera- 
tions is applied to weighted wavelength regions based on certain predeter- 
mined criteria. In addition, when comparing one spectral form to another, 
one must consider carefully how the aerosol spectra were recorded. Bryson 
and Flanigan have reported on an obvious but interesting effect witnessed 
during a series of FTIR aerosol field measurements [28]. They report that 
for wavelengths in which aerosols are highly absorbing, as is for BG above 
6 (im, measured transmission may appear as either an extinction or emission 
spectra (one being the mirror image of the other), depending on whether 
the background is considered hot or cold relative to the aerosol. The sym- 
metry relation between absorption and emission spectra is a direct result of 
Kirchhoff 's law that relates aerosol absorption efficiencies to particle emis- 
sivity [29]. Under such conditions, it would be desirable to consider a "form"- 
preserving operation that is independent of aerosol density and/or back- 
ground conditions. 

As an example, we apply two simple form-preserving operations on the 
measured extinction spectra, i.e., first and second derivatives (see fig. 8). 
Figure 8 shows the original extinction for each aerosol measured at various 
concentrations (top spectra in each frame). Below each extinction curve, we 
show the resultant first and second derivatives. One fairly easy parameter 
to "key on" would be the spectral position of where the first and second 
derivatives cross zero (shaded narrow regions). Minor variance in defining 
these zeros arises when attenuation is extremely weak because of low aero- 
sol concentrations. 
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(middle) and second (bottom) derivatives. 
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The question remains: "Can one remotely identify the presence of a harm- 
ful bioaerosol using conventional IR transmission measurements like those 
conducted here?" The answer to this question is complex and a function of 
many parameters, e.g., optical depth, sensor response, ambient atmospheric 
conditions, etc. As a result, we make no attempt to give a definitive answer. 
However, certain key aspects should be addressed when considering such 
a scenario. 

First, because aerosol extinction spectra have a tendency to be relatively 
smooth, low-resolution spectroscopy will usually suffice. Although the spec- 
trometer used for this study was set at a resolving power of 4 cm-1, no spec- 
tral features were observed that could not be resolved at a substantially 
lower setting, for example, 20 cm-1. Second, a reasonable amount of 
bioaerosol material must obviously be present (relative to ambient condi- 
tions) to discern noticeable changes in the transmission. 

To get an "order of magnitude" estimate of the bioaerosol concentrations 
necessary to be spectroscopically measurable, let us first assume a simple 
transmisometer-type arrangement in which a homogenous bioaerosol cloud 
obscures a sufficiently powerful broadband IR source. Assuming an en- 
dospore cloud 100 m in extent obscures a similarly dimensioned optical 
path for a collimated beam (diameter 4 cm), we estimate a minimum de- 
tectable particle density (to achieve a reasonable amount of attenuation) to 
be on the order of 10 to 20 particles/cm3. 

Up to this point, we have assumed that clear conditions and effects caused 
by the intervening atmosphere were negligible, i.e., spectral masking be- 
cause of path radiance and molecular absorption by gaseous C02, H20, and 
03. When these effects are considered and the distance from the spectrom- 
eter to the biocloud is in excess of 5 km or more, the minimum detection 
limits stated in the previous paragraph increase several fold. This seems to 
restrict the type of approach one might consider to the "plume identifica- 
tion" realm in which the measurement is conducted near to the source and 
that the bioaerosol cloud is sufficiently dense. Based on this and our experi- 
ence in measuring aerosol spectra, we believe that the remote detection of a 
bioaerosol using IR extinction spectra will be limited to active illumination 
techniques in which the source of radiation is sufficiently strong enough to 
overcome the detrimental effects caused by atmospheric absorption and 
path/ground radiance. 
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